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A complete solution of kinetic equat ions has been obtained for isolated second order reactions 
at feeding one compound into the solution of .the second and at feeding both compounds into 
the empty solution (pure solvent). On basis of these solutions, simple methods for determinat ion 
of rate constants have been proposed for bo th feed alternatives. 

The feed reactor is characterized by a continual inlet of reaction components (one 
or several) and by the zero outlet of the reaction mixture from the reactor. 

Theoret ical description of the feed reactor can be based on equations valid for the backmix 
flow reactor with the outlet rate chosen equal to zero. Except of the study by Kiri lov1 , the majori ty 
of available studies for the backmix reactor are based on the assumption of equal inlet and out-
l e t 2 - 4 rates. In all cases the solution is given only for the first and pseudofirst reaction order 
while for more complex cases the discussion is limited to the stat ionary state. Two s tud ie s 5 ' 6 

which can be considered as the first practical application of the feed reactor with a constant 
feed rate of one compound are again limited to isolated first order reactions. This technique 
has been a t tempted by other a u t h o r s 7 ' 8 for more complex reactions with use of the analog 
c o m p u t e r 9 ' 1 0 and ra te constants have been evaluated. Feeding one component at a constant 
rate into the solution of the second component is theoretically studied in other p a p e r s 1 1 ' 1 2 . 
There the problem is simplified up to the infinitely high rate of the basic reaction and the side 
reaction of the non-fed component or its reaction product is studied and approximate solutions 
of kinetic equat ions are given. Practical application is represented by the study on d i smuta t ions 1 3 . 
Feed reactor with a variable feed rate, chosen so that the final concentrat ion of some of the 
components be a linear funct ion of time, is solved theoretically on an analog model by C o v e r 1 4 . 
Practical application of these studies has not yet been published; its main difficulty obviously lies 
in a complex p rogrammed feeding device and in the necessity to per form a number of experiments 
till the suitable feed ra te is found. 

All so far quoted studies have considered the feed of one component . The feed reactor with 
the feed of bo th components has not yet been described. 

In this study we have made an attempt to solve completely the feed reactor for 
second order reactions with arbitrarily constant feed rates of both components and 
to demonstrate how the rate constants can be simply determined. 

* Par t I in the series New Methods in Homogeneous React ion Kinetics. 
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Theory of Feed Reactor 2277 

The feed reactor can be operated basically in two ways: a) by feeding one com-
ponent into the basical solution of the second component, b) by feeding individually, 
both components into the media in which the reaction takes place (so-called empty 
solution). 

Both procedures can be described by a common system of kinetic equations with 
different feed rates and initial conditions. If we consider the second order reaction 

A + vB — P (1) 

with the feed rates rA, rB (M s _ 1 ) , for changes of molarities of reaction components 
with time holds 

- d [ A ] / d * = fc[A] [B] - rA = d [P ] /d t , (la) 

- d [ B ] / d f - k[A] [B] - rB , (lb) 

while rx = [X] 0 v qjV and where [X] 0 is molarity of the fed component, v rate of 
motion (cm s _ 1 ) of syringe pistons with the area q(cm2) and F i s the volume (ml) 
of solution in the reactor. At feeding sufficiently concentrated solutions, the effect of 
dissolution can be neglected; in practice e.g. when feeding the total volume of 2 ml 
into 100 ml of basical solution. 

For solution of the system of Eqs (la, b), at first the differential relations between the concent-
rations [A] and [B] are obtained by equating the product k [A] [B] from both equations and by 
comparison of both relations 

— v(d[A]/d/) + vrA = — d[B]/d/ + rB . (2a) 

After integration in the range 0 to t, [A(0)] to [A] and [B(0>] to [B] we obtain 

- v { [ A ] - [A(O)]} = - {[B] - [B(O)]} + (rB - vrA) / . (2b) 

After substitution from (2b) into (la), for [B] or into (lb) for [A] we obtain 

d[A]/d/ = - vk[A]2 + ^[A] {(vrA - rB) t + v[A(0)] - [B(O)]} + rA , . (3a) 

d[B]/df - —>t[B]2 + A:[B] {(rB - vrA) t + [B(O)] - v[A(0)]} + rB , (3b) 

which are differential equations of the Riccati's type for which the solution in the closed type 
can be found. In the following the feed alternatives a) and b) are considered separately. 

Feed of the Component B into the Basic Solution of Component A 

This alternative is characterized by the following feed rates and initial conditions: 

rA = 0 , rB * 0 , [A(0)] = a , [B(0)] - 0 . (4a) 
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Eq. (3a) of the Riccati's type is simplified by the conditions (4a) to the equation of 
the Bernoulli's type which can be easily integrated15 with the result 

M - exp (-T2/2<x)/[exp (-1/2<t) + (1/<t) f exp(-x2/2<j) dx], (4b) 
a J - i 

where 

r = (rB?/v.a) — 1 ; o = rBjv2a2k . (4c, d) 

By substituting Eq. (4b) into Eq. (2b) under conditions (4a), relation for the depen-
dence of concentration of B on time is obtained 

[B]/av = T + [A]/a , (5a) 

and from the condition of total concentration of compound A the dependence of 
concentration of product P on time is given by 

[P]/a = 1 - [A]/« . (5b) 

Several calculated dependences of relative concentrations [A]/a, [B~\ja, [P~]ja on 

Fig. 1 
Relative Concentrations of Reactants at 
Feeding the. Compound B into Solution of 
Compound A 

[B(£)]/*, - . - . - . - [P(f)]/a, 
[A(0]/a; a: 1 0 0494, 2 0 08, 3 0-15, 4 0-3. 

Fig. 2 
Concentration in Schematical Dependence 
on Time for Feed of Component B into 
Solution of A 
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quan t i t y* ( t + l ) / c = tavk = £ f o r d i f ferent p a r a m e t e r s a of p rac t ica l i m p o r t a n c e 
are given in Fig. 1. 

The dependence concentration-time (Fig. 2) can be qualitatively explained as follows: At the 
beginning of reaction the concentration [B] is small and thus the product k [A] [B] is small as 
well and the reaction is practically at standstill. In relations (la, b) in the initial region of reaction 
the products k [A] [B] can be neglected so that [A] remains constant (d[A]/d/ = 0), [A] = a, 
[P] is equal to zero and B increases linearly with time (d[B]/d? = rB) according to relation [B] = 
= V -

The central part of curves is characterized by the feed rate rB of the same magnitude as the 
product A:[A] [B] and at a certain time interval they even compensate each other so that according 
to (lb) is d[B]/df = 0 and concentration [B] in the stationary state is given by the value rB/vk[A], 
At the same time, according to (la) the reaction rate — d[A]/d/ is constant and equal to rB as 
well as the rate of product formation d[P]/dr. 

In the final state when A is nearly consumed, the product Ar[A] [B] is again negligible so that 
[B] increases linearly with time, [A] is nil and [P] is constant and equal to a. 

If on the curve [B(V)] is the ho r i zon t a l ex t r apo la t ed by the co r r e spond ing s ta t ionary 
concen t r a t i on u p t o the ini t ial region a n d the in tersec t ion wi th t he ini t ial l inear 
b r a n c h is m a d e , ( to which is re la ted the value [ A ] = a), t he re la t ions a re ob ta ined 

FIG. 3 
Extrapolation of Linear Branches of Curves 
Relative Concentration-Time for the Non-fed 
Reactant and Product 

[P]/a, a; 1 0 0494, 2 0 0625, 3 0 08, 
4 015; [A]/a, a: 5 0 0494, 6 0 0625, 7 0 08, 
8 015. 

F I G . 4 

Extrapolation of Initial and Central Branches 
of Curves Relative Concentration-Time for 
the Fed Component 

For values of parameter 8 see Fig. 3. 

* This transformation shifts origin of the coordinate system to t = 0 and the relation for 
determination of the rate constant (see (6c)) to the point ta v k = 1. 
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The time coordinate of the intersection t+ is thus independent of the feed rate and 
according to (6c) enables to determine from the known initial concentration of the 
not-fed component and from the known stoichiometry the rate constant k. Similarly, 
the intersection of the linear decrease of [A(?)] with the horizontal [A] = a or of 
the linear increase [P(f)] with the horizontal [P] = 0 gives the value t +. 

Verification of these qualitative considerations on actual dependences [A(f)J, 
[B(f)], [P(f)] have demonstrated (Figs 3,4) that they are correct up to the value of para-
meter G = 0-06, despite the central part of [B(f)J curves is not horizontal. Simultane-
ously the independence of t+ on different feed rates represents a criterion (since the 
rate constant for calculation of a suitable value a is not known in advance) if con-
ditions for application of the described simple method for determination of the rate 
constant are satisfied. 

It is obvious from Fig. 4 that if the relation t+ = 1 does not hold there appears 
on the [B(f)] curves an inflex which can be also used for determination of the rate 
constant: If d 2 [B ] /df 2 is expressed from (lb) and put equal to zero, in the inflex point 
is obtained the relation 

/c[B] ([B] + v[A]) = rB . (6d) 

If A is substituted from Eq. (5a) the following relations are obtained 

([B]/va) (2[B]/VA - T,) = <7 , (6e) 

k = rB(2[B] - rBf ; + va)/[B] . ( 6 f ) 

The accuracy, with which this relation can be used for determination of the rate constant, is 
given by the accuracy of the position of the inflex point. Information on this can be given e.g. 
f rom comparison of theoretical values of a and those calculated f rom Eq. (6e) at the visually 
determined position of the inflex point on the theoretical [B(/)] curves as demonstrates Table I. 

When Eq. (6/) is applied, the time of the inflex must be measured together with the concentration 
of the fed component at this point. However, by elimination of [B]/va f rom (6d) by use of Eqs 

T A B L E I 

Comparison of Theoretical and Calculated Parameters a According to Eq. (6e) 

1-6 1-75 2-0 2-50 3-0 4 4-6 5 6 
0-20 0-30 0-40 0-50 0-55 0-60 0-63 0-687 0-706 

[B]V 0-46 0-375 0-30 0-21 0-17 0-12 0-10 0-075 0-06 
cr 0-515 0-394 0-30 0-193 0-151 0-1008 0-083 0-0627 0-0495 
t̂eor 0-5 0-4 0-3 0-2 0-15 0-1 0-08 0-0625 0-0494 

Deviation, % + 30 -1-5 0-0 -3 -5 + 0-8 + 0-8 + 3-7 + 0-3 0-0 
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(5a) and (4b) the relation relating x{ with the parameter a can be obtained which is only the relation 
between the time of inflex tx and the rate constant k. But, unfortunately, this relation is trans-
cendent and so it can be solved only graphically as is demonstrated in Fig. 5. For a practical 
application the quantity r ; = (t{rBjva) — 1 is determined from the experimentally obtained value 
of /j, the respective value of a is read off f rom the graph and the rate constant k = (t; + l)/va/j<7 
is calculated. This procedure is advantageous especially in those cases when instead of con-
centration [B] is measured the quantity H which is in a linear dependence on concentrations of 
all reactants (e.g. absorbance). In such case the time coordinate of the inflex of curve H(7) is the 
same as that of the curve [B(0] because from (la, b) results that with the condition d 2 [B] /df 2 = 0 
is simultaneously fulfilled d 2 [A]/dr 2 = 0 and d2[P]/d/ = 0 and so d 2 H / d t 2 = 0 holds as well. 

From analogous [B(7)l curves obtained by the electrolytic supply of the component B in lite-
r a tu re 1 6 ' 1 7 were already described methods for determination of the rate constant which were 
based on the differential kinetic equation where at first the derivative d[(B)]/d/ had to be deter-
mined graphically and for the actual concentration [B] calculated [A] which represented a cum-
bersome and a very time-consuming procedure where the total accuracy of the result was small 
as so many parameters had to be determined. 

Feeding of Both Components A and B into the Empty Solution 

This situation is characterized by the following feed rates with the initial conditions: 

r A # 0 , r B # 0 , [ A ( 0 ) ] = 0 , [B (0 ) ] = 0 . (7a) 

For both non-zero feed rates it is still advisable for further interpretation to differ 
two cases i.e the stoichiometric and nonstoichiometric feed. 

Stoichiometric feed. Especially simple solution of Eq. (3a) or (3b) can be obtained 
by a choice of the feed rates vrA — rB = 0 at which the reactants are fed at the stoi-
chiometric ratio. Then the Riccati's equations (3a, b) are reduced to the case in which 
the separation of variables can be easily made and the integration performed by sepa-
ration to partial fractions with the result: 

[ A ] = ( r A j v k y 2 { [exp \ 2 t ( v k r ^ - l ] / [ e x p [2 f (vfc r A ) ' /* ] + 1]} ; 

[ B ] = (r^k)1'2 { [ exp [2 f ( / c r B ) 1 / 2 ] - l ] / [ e x p [:2*(fcrB)1 '2] + 1]} . (7b, c) 

[ P ] = r A . f - [ A ( 0 ] . (7d) 

The dependence of [A(f)] and [P(?)] is plotted in Fig. 6. For the intersection of the 
initial linear branch* [A] = rAt with the asymptote [A] = (rx\vk)x'2 (or for the 

* It is not necessary to obtain these branches by constructing the tangents [A(r)] or [P(/)l 
of the curve at the origin or in the curved part (which always are affected by a certain error) 
but directly since the slope rA is known. Eventually the direct line [A] = r j can be directly regis-
tered if rn = 0 is chosen. 
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curve [(B(f)] the intersection of the branch [B] = rBt and the asymptote B = 
= (rB/fc)1/2) the relations hold 

t+ = (l/v/crA)1/2; [ A ] + = (rA/vfc)1/2 event. t+ = (1 fak)1'2 ; [B] + = (rB/fc)1/2 . 
(8a, b) 

The intersection of the linear, ascending part of the [P] — t curve (i.e. valid for 
t -*• oo) extrapolated to the axis [P] = 0 is obtained by use of Eq. ( Id ) in the form 

= [A(t = oo)]/rA = (1 lvkrAy<2 . (8d) 

The relations for t+ as well as for [ A ] + for the reactants and the products are not 
based on any aproximations and are suitable for calculation of the rate constant. 

The qualitative expression of the dashed part of plotted branches from Fig. 6 again results 
from the considerations and significance of the product &[A] [B] in {la, b): in the initial state this 
product is negligible as [A(0] « 0; and [B(r)] « 0, and the concentrations of [A] and [B] are 
increasing linearly with time. In the final state £[A] [B] is compensated by rA and simultaneously 

[B] by rB, as at the stoichiometric feed rB — vrA; thus derivations d[A]/dr and d[B]/df are 
equal to zero. 

Nonstoichiometric feed. If the condition vrA = rB is not satisfied, Eqs (3a, b) 
remain of the Riccati's type. 

FIG. 5 

Theoretical Dependence of Coordinate of 
the Inflex Point on Parameter a 

FIG. 6 

Theoretical Curves Concentration-Time at 
Stoichiometric Feed of Both Reactants 

Curve 1: <p = [A] (vklrA)1/2 or [B] 
(k/rB)i/2; curve 2; q> = [P](vk/rA)1 /2 , $ = 
= tivkrj1'2. 
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In this case Eq. (3a) can be t ransformed by substitution f r o m Eq. (9a) to the linear differential 
second order equat ion with inconstant coefficients (9b) 

A ( t ) = u(t)jvku(t) ; u" + u'kt(rB — v r A ) — urAvk = 0 , (9a, b) 

which can be t rans formed by t ransformat ion (10a) of the independent variable t into the region 
of purely imaginary numbers , into the equat ion for which the solution for integer n a r e 1 5 the 
Hermit ' s polynomials H n (x ) defined by relation 

x = it[k(rB-vrA)l2]112; n = v r A / ( r B - v r A ) (10a) 

u(x) = H n U ) = ( - 1 ) " exp (x2)dD exp ( - ; c 2 ) / d ; t n . (10b) 

This means that if the ra t io of feed rates is in the rat io of two successive integers rB/vrA = (n + 1) n, 
the solution for [A(f)l can be obtained by use of the Hermi t ' s polynomials. If the reversed sub-
stitutions are made, part icular integral (for n = 1, 2, . . . ) in the f o r m 

[ A ^ O ] = ( 1 M ) 2n H n _ 1 ( / ) / H n ( / ) . (11) 

is obtained. If the general integral fo r [A] is given as the sum of part icular [A J and of the unknown 
funct ion co(t) and is introduced into Eq. (3a), fo r the unknown funct ion co(t) results 

co' = -co2k - co&^fAJ + t v r j n ) , (12) 

which is an equat ion of the Bernoulli 's type and by substitution z = 1 ja> is t ransformed into the 
linear differential equat ion with the right hand side that can be solved by the method of variation 
of the constant . Af te r reversed substi tutions the general solution for [A(/)] is finally obtained in 
the f o r m 

[ A ] = [ A x ] + [(vkJ + L) e x p (2vk J [ A J d t ) e x p (vkrAt2/In)}'1 , (13) 

where 

J= j " e x p ( - 2 v i J " [ A , ] d ( - vkr At2 !2n) it, a n , £ - 0 fo r 

odd n, and L — oo for even n. 

FIG. 7 

Curves Concent ra t ion-Time at Nonstoichio-
metric Feed of Both Reactants 

y: 1 1/2; 2 2/3; 3 4/5; 4 12/13; 5 1; 6 13/12; 
7 5 /4 ; 8 3/2; 9 2. 

A
 ! / 

/ 2 

/ 
3 

5 
6 
7 

Mr ~~~ 
f \ I 1 9 
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Values of the integration constant L result from the requirement that for all «[A(7 = 0)] = 0 
when we realize that for even n is lim [ A J and also lim / = 0 while for odd n for t—>0 [A1(/')] « 

t-> o t-»o 
« — 1 jvkJ(t). 

The dependence of concentration of the second component on time B(/) can be calculated 
from known [A(f)] on basis of (2b): % 

[B(01 = (rB ~ vra) t + v[A(/)] . (14a) 

The dependence [P(01 is given similarly as Eq. (7d) by the relation 

[P(0] = rAt - [A(0] • (14b) 

As the solution [A(/)] is known only for the feed conditions rB/vrA = (ti + 1 )/n > 1, it means 
that the [A(7)] curves can be calculated from Eq. (13) only for conditions rB > vrA i.e. for the 
feed of component A lower than stoichiometric. For the stoichiometric feed [A(/)l is given by 
Eq. (7b). The dependences [A(7)l at greater feed of component A than corresponds to the stoichio-
metric ratio (i.e. for the above equivalent curves [A(r)]) can be solved as follows: From Eq. (3b) 
is expressed [B(/)] for feed of B in the lower than stoichiometric ratio and then by use of Eq. 
(14) from the known lower than equivalent dependence of [B(7)J the above equivalent depen-
dences of [A(f)] are calculated. 

The dependence of [A(f)J curves for different ratios y = rB/vrA is given for illustra-
tion in Fig. 7. 

The qualitative shape of curves can be derived from the dependence at the stoichio-
metric feed: the ascending initial region where the rate of chemical reaction is small 
is similar, but in the next region instead of the steady state either the component B 
is in excess and consequently A is continually removed (lower than equivalent [ A(f)] 
curves), or on the contrary the component B is removed and thus A is continually 
increasing (above-equivalent [A(f)] curve). 

The important point on the lower than equivalent curves is the extreme in which 
according to (3a) holds 

* = >a / [v [A] 2 + [ A ] t(rB - v r A ) ] . (15) 

For vrA ~ rB the maximum is relatively flat and it is difficult to determine the corres-
ponding time coordinate. It is better to use in these cases for determination of the rate 
constant the relations (6b or 6c) which were derived for vrA = rB. As was verified 
by theoretical curves, the error made in this way was not greater than 4% as long as 
t*b was situated within the interval 0-923 rA v to 1-083 rAv. 

Aside from an extreme, the subequivalent curves have also the inflex point, where 
on the basis of the once more differentiated Eq. (3a) holds 

* = ^a/[v[A]2 - [A] (vrA - rB) t] + (vrA - rB)/{v[A] - (vrA - rB) t} . 

• {(v rA ~ r B ) t ~ 2 v [ A ] } . (16) 
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In practice it is rather difficult to determine accurately the coordinates of this inflex 
point. 

If the rate constant is to be determined from the dependence of product concentra-
tion on time then from the derivative of Eq. (14b) in time results that in the point of 
the extreme of the [A(f)J curve the [P(f)J curve has the slope rA which makes possible 
to determine the time of the extreme t, calculate [A(r)J from Eq. (14b) and to substi-
tute it into Eq. (15). Or we determine by a double differentiation of (14b) in time that 
the time coordinates of the inflex on the [P(f)] and [A(f)] curves are identical. The 
[A(*)] calculated from (14b) can be then substituted into Eq. (16) and k can be calcu-
lated. 

Curves Absorbance-Time and Their Relation to Curves Concentration-Time 

Concentration in practical cases is never determined directly, but by a quantity which 
is proportional to it or more generally by a quantity which is linearly dependent on 
concentrations of all reactants. Thus the question arises how valid are relations for 
calculation of the rate constant derived from the curves concentration-time. 

If for calculation of the rate constant is chosen the relation based only on the time 
coordinate i.e. Eq. (6c) at the feed of one component or (8a, b, c) at the stoichio-
metric feed of both components, then the only concern is as accurate calculation as 
possible of the time coordinate of the intersection of two concentration-time branches. 
The linear transformation of these extrapolated branches from the dependence con-
centration-time on dependence absorbance-time does not alter the value of the inter-
section t+, only the slope of individual branches and so these fed branches can be 
used for calculation of the rate constant even in cases when both the reactants and 
the products are coloured. If only one component of the mixture is coloured, its 
extinction coefficient can be determined and for calculation of the rate constant also 
Eqs (8a, b) can be used which are based on measurements of the stationary concentra-
tion. 

At the nonstoichiometric feed the relation (15) includes the term for calculation 
of the rate constant together with the time constant of the extreme and the actual 
concentration of the component fed in the lower, than stoichiometric ratio. If only one 
component in the reaction mixture is coloured regardless of the reactant or product 
the concentration can be calculated from the measured absorbances and Eq. (15) 
can be also applied. If there are several coloured components the alternative with the 
nonstoichiometric feed has no practical significance. 

The derived theoretical relations were verified on a number of model reactions. 
The obtained results proved fully satisfactory and they represent a simple method 
for determination of the rate constant. The obtained rate constants are in a very good 
agreement with their values calculated by another, independent method as we shall 
demonstrate in our next study. 
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